New method to synchronize devices on Earth makes use of cosmic rays
Date:
May 9, 2022
Source:
University of Tokyo
Summary:
Various technologies, networks and institutions benefit
from or require accurate time keeping to synchronize their
activities. Current ways of synchronizing time have some drawbacks
that a new proposed method seeks to address. The cosmic time
synchronizer works by synchronizing devices around cosmic ray
events detected by those devices. This could bring accurate timing
abilities to remote sensing stations, or even underwater, places
that other methods cannot serve. Early tests show promise, but
the real challenge may lie in the adoption of this new technique.
FULL STORY ========================================================================== Various technologies, networks and institutions benefit from or require accurate time keeping to synchronize their activities. Current ways of synchronizing time have some drawbacks that a new proposed method seeks
to address. The cosmic time synchronizer works by synchronizing devices
around cosmic ray events detected by those devices. This could bring
accurate timing abilities to remote sensing stations, or even underwater, places that other methods cannot serve. Early tests show promise, but
the real challenge may lie in the adoption of this new technique.
========================================================================== Humanity is intimately connected with the idea of time. Historically,
we used the cosmos itself -- stars, the sun, and the moon -- to measure
time and coordinate our activities. It's fitting, then, that researchers
are looking out to the cosmos again to further develop our ability to
keep time. Professor Hiroyuki Tanaka from Muographix at the University
of Tokyo devised and tested a way to synchronize multiple devices,
so they agree upon the time, that makes use of cosmic rays from deep
space. Appropriately, it's called cosmic time synchronization (CTS).
"It's relatively easy to keep time accurately these days. For
example, atomic clocks have been doing this for decades now," said
Tanaka. "However, these are large and expensive devices that are very
easy to disrupt. This is one reason I have been working on an improved
way to keep time. The other is that, related to time measurement,
position measurement could also be made better. So really, CTS is a
precursor to a potential replacement for GPS, but that's still a little
further down the line." The reason it's critical for devices to have a
shared sense of time is that certain devices are increasingly important
in many aspects of life. Computer networks responsible for financial transactions must agree upon time so that the order of transactions can
be ensured. There are sensors that work in unison to observe various
physical phenomena which need to agree upon time so that, for example,
the origin of a particular reading can be determined. Such sensors could
even potentially be part of some kind of disaster warning system.
CTS works thanks to cosmic rays from deep space that strike the atmosphere around 15 kilometers up, creating showers of particles including
muons. The muons travel close to the speed of light, reaching the ground
almost immediately, they can easily penetrate water or rock, and spread
out as they travel to cover a few square kilometers of ground. Independent CTS-enabled devices under the same particle shower can detect the incoming muons, which will have a specific signature unique to the cosmic ray
event that generated them. By sharing this information, CTS devices can
confer with one another and synchronize their clocks according to when
the cosmic ray event took place. The ultrahigh-energy cosmic ray strikes
occur frequently enough, about a hundred times per hour over every square kilometer of Earth, for CTS devices to work together in real time.
"The principle is robust, and the technology, detectors and timing
electronics already exist. So we could implement this idea relatively
quickly," said Tanaka. "Satellite-based time synchronization has so many
blind spots at the poles, in mountainous regions or underwater, for
example, and CTS could fill these gaps and more. The problem, as with
any new technology, is one of adoption. Thomas Edison lit up Manhattan
starting with a single light bulb.
Perhaps we should take that approach, starting with a city block, then a district, and eventually we'll synchronize the whole of Tokyo and beyond."
========================================================================== Story Source: Materials provided by University_of_Tokyo. Note: Content
may be edited for style and length.
========================================================================== Journal Reference:
1. Hiroyuki K. M. Tanaka. Cosmic time synchronizer (CTS) for
wireless and
precise time synchronization using extended air showers. Scientific
Reports, 2022; 12 (1) DOI: 10.1038/s41598-022-11104-z ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2022/05/220509112046.htm
--- up 10 weeks, 10 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)