Compact, non-mechanical 3D lidar system could make autonomous driving
safer
Unique, chip-based light source allows scanning lidar to be combined with
3D flash lidar
Date:
February 9, 2023
Source:
Optica
Summary:
A new system represents the first time that the capabilities of
conventional beam-scanning lidar systems have been combined with
those of a newer 3D approach known as flash lidar. The nonmechanical
3D lidar system is compact enough to fit in the palm of the hand and
solves issues of detecting and tracking poorly reflective objects.
Facebook Twitter Pinterest LinkedIN Email
FULL STORY ==========================================================================
Our roads might one day be safer thanks to a completely new type of system
that overcomes some of lidar's limitations. Lidar, which uses pulsed
lasers to map objects and scenes, helps autonomous robots, vehicles and
drones to navigate their environment. The new system represents the first
time that the capabilities of conventional beam-scanning lidar systems
have been combined with those of a newer 3D approach known as flash lidar.
==========================================================================
In Optica, Optica Publishing Group's journal for high-impact research, investigators led by Susumu Noda from Kyoto University in Japan describe
their new nonmechanical 3D lidar system, which fits in the palm of the
hand. They also show that it can be used to measure the distance of poorly reflective objects and automatically track the motion of these objects.
"With our lidar system, robots and vehicles will be able to reliably
and safely navigate dynamic environments without losing sight of poorly reflective objects such as black metallic cars," said Noda. "Incorporating
this technology into cars, for example, would make autonomous driving
safer." The new system is possible thanks to a unique light source the researchers developed called a dually modulated photonic-crystal laser (DM-PCSEL). Because this light source is chip-based it could eventually
enable the development of an on-chip all-solid-state 3D lidar system.
"The DM-PCSEL integrates non-mechanical, electronically controlled beam scanning with flash illumination used in flash lidar to acquire a full 3D
image with a single flash of light," said Noda. "This unique source allows
us to achieve both flash and scanning illumination without any moving
parts or bulky external optical elements, such as lenses and diffractive optical elements." Combining scanning and flash illumination Lidar
systems map objects within view by illuminating those objects with laser
beams and then calculating the distance of those objects by measuring the beams' time of flight (ToF) -- the time it takes for the light to travel
to objects, be reflected and then return to the system. Most lidar systems
in use and under development rely on moving parts such as motors to scan
the laser beam, making these systems bulky, expensive and unreliable.
One non-mechanical approach, known as flash lidar, simultaneously
illuminates and evaluates the distances of all objects in the field of
view with a single broad, diffuse beam of light. However, flash lidar
systems can't be used to measure the distances of poorly reflective
objects like black metallic cars due to the very small amount of light reflected from these objects. These systems also tend to be large
because of the external lenses and optical elements needed to create
the flash beam.
To address these critical limitations, the researchers developed the
DM-PCSEL light source. It has both a flash source that can illuminate a
wide 30DEGx30DEG field of view and a beam-scanning source that provides
spot illumination with 100 narrow laser beams.
They incorporated the DM-PCSEL into a 3D lidar system, which allowed them
to measure the distances of many objects simultaneously using wide flash illumination while also selectively illuminating poorly reflective objects
with a more concentrated beam of light. The researchers also installed a
ToF camera to perform distance measurements and developed software that
enables automatic tracking of the motion of poorly reflective objects
using beam-scanning illumination.
Measuring objects with varying reflectivity "Our DM-PCSEL-based 3D lidar
system lets us range highly reflective and poorly reflective objects simultaneously," said Noda. "The lasers, ToF camera and all associated components required to operate the system were assembled in a compact
manner, resulting in a total system footprint that is smaller than a
business card." The researchers demonstrated the new lidar system by
using it to measure the distances of poorly reflective objects placed
on a table in a lab. They also showed that the system can automatically recognize poorly reflective objects and track their movement using
selective illumination.
The researchers are now working to demonstrate the system in practical applications, such as the autonomous movement of robots and vehicles. They
also want to see if replacing the ToF camera with a more optically
sensitive single- photon avalanche photodiode array would allow the
measurement of objects across even longer distances.
* RELATED_TOPICS
o Matter_&_Energy
# Optics # Civil_Engineering # Vehicles # Detectors
o Computers_&_Math
# Artificial_Intelligence # Robotics # Computer_Science
# Computer_Programming
* RELATED_TERMS
o Earth_science o Nanotechnology o Quantum_entanglement
o Oscillation o Mathematical_model o
Fingerprint o Application_software o
Statistical_ensemble_(mathematical_physics)
========================================================================== Story Source: Materials provided by Optica. Note: Content may be edited
for style and length.
========================================================================== Journal Reference:
1. Menaka De Zoysa, Ryoichi Sakata, Kenji Ishizaki, Takuya Inoue,
Masahiro
Yoshida, John Gelleta, Yoshiyuki Mineyama, Tomoyuki Akahori,
Satoshi Aoyama, Susumu Noda. Non-mechanical three-dimensional LiDAR
system based on flash and beam-scanning dually modulated photonic
crystal lasers.
Optica, 2023; 10 (2): 264 DOI: 10.1364/OPTICA.472327 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2023/02/230209114747.htm
--- up 49 weeks, 3 days, 10 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)