Calorie restriction slows pace of aging in healthy adults
Date:
February 9, 2023
Source:
Columbia University's Mailman School of Public Health
Summary:
In a first of its kind randomized controlled trial an international
team of researchers shows that caloric restriction can slow the pace
of aging in healthy adults. The CALERIE[TM] intervention slowed
pace of aging measured from participants' blood DNA methylation
using the algorithm DunedinPACE (Pace of Aging, Computed from the
Epigenome). The intervention effect on DunedinPACE represented a
2-3 percent slowing in the pace of aging, which in other studies
translates to a 10-15 percent reduction in mortality risk, an
effect similar to a smoking cessation intervention.
Facebook Twitter Pinterest LinkedIN Email
FULL STORY ==========================================================================
In a first of its kind randomized controlled trial an international
team of researchers led by the Butler Columbia Aging Center at the
Columbia University Mailman School of Public Health shows that caloric restriction can slow the pace of aging in healthy adults. The CALERIE[TM] intervention slowed pace of aging measured from participants' blood DNA methylation using the algorithm DunedinPACE (Pace of Aging, Computed from
the Epigenome). The intervention effect on DunedinPACE represented a 2-3 percent slowing in the pace of aging, which in other studies translates
to a 10-15 percent reduction in mortality risk, an effect similar to a
smoking cessation intervention. The results are published online in the
journal Nature Aging.
==========================================================================
"In worms, flies, and mice, calorie restriction can slow biological
processes of aging and extend healthy lifespan" says senior author
Daniel Belsky, PhD, associate professor of epidemiology at Columbia
Mailman School and a scientist with Columbia's Butler Aging Center. "Our
study aimed to test if calorie restriction also slows biological aging
in humans." The CALERIE[TM] Phase-2 randomized controlled trial, funded
by the US National Institute on Aging, is the first ever investigation
of the effects of long-term calorie restriction in healthy, non-obese
humans. The trial randomized 220 healthy men and women at three sites
in the U. S. to a 25 percent calorie- restriction or normal diet for
two years. CALERIE[TM] is an acronym for `Comprehensive Assessment of
Long-Term Effects of Reducing Intake of Energy'.
To measure biological aging in CALERIE Trial participants, Belsky's
team analyzed blood samples collected from trial participants
at pre-intervention baseline and after 12- and 24-months of
follow-up. "Humans live a long time," explained Belsky, "so it isn't
practical to follow them until we see differences in aging-related disease
or survival. Instead, we rely on biomarkers developed to measure the pace
and progress of biological aging over the duration of the study." The team analyzed methylation marks on DNA extracted from white blood cells. DNA methylation marks are chemical tags on the DNA sequence that regulate
the expression of genes and are known to change with aging.
In the primary analysis Belsky and colleagues focused on three
measurements of the DNA methylation data, sometimes known as
"epigenetic clocks". The first two, the PhenoAge and GrimAge clocks,
estimate biological age, or the chronological age at which a person's
biology would appear "normal". These measures can be thought of as
"odometers" that provide a static measure of how much aging a person has experienced. The third measure studied by the researchers was DunedinPACE, which estimates the pace of aging, or the rate of biological deterioration
over time. DunedinPACE can be thought of as a "speedometer".
"In contrast to the results for DunedinPace, there were no effects
of intervention on other epigenetic clocks," noted Calen Ryan, PhD,
Research Scientist at Columbia's Butler Aging Center and co-lead author
of the study.
"The difference in results suggests that dynamic `pace of aging' measures
like DunedinPACE may be more sensitive to the effects of intervention than measures of static biological age." Our study found evidence that calorie restriction slowed the pace of aging in humans" Ryan said. "But calorie restriction is probably not for everyone. Our findings are important
because they provide evidence from a randomized trial that slowing
human aging may be possible. They also give us a sense of the kinds of
effects we might look for in trials of interventions that could appeal
to more people, like intermittent fasting or time-restricted eating."
A follow-up of trial participants is now ongoing to determine if the intervention had long-term effects on healthy aging. In other studies,
slower DunedinPACE is associated with reduced risk for heart disease,
stroke, disability, and dementia. "Our study of the legacy effects of
the CALERIE[TM] intervention will test if the short-term effects observed during the trial translated into longer-term reduction in aging-related
chronic diseases or their risk factors," says Sai Krupa Das, a senior
scientist and CALERIE investigator who is leading the long-term follow
up of CALERIE[TM] participants.
DunedinPACE was developed by Daniel Belsky and colleagues at Duke
University and the University of Otago. To develop DunedinPACE,
researchers analyzed data from the Dunedin Longitudinal Study, a landmark
birth cohort study of human development and aging that follows 1000
individuals born in 1972-73 in Dunedin, New Zealand. Researchers first
analyzed the rate of change in 19 biomarkers across 20 years of follow-up
to derive a single composite measure of the Pace of Aging. Next, the researchers used machine-learning techniques to distill this 20-year
Pace of Aging into a single-time-point DNA methylation blood test.
The values of the DunedinPACE algorithm correspond to the years of
biological aging experienced during a single calendar year, providing
a measure of the pace of aging.
The study was supported by US National Institute on Aging grant
R01AG061378 and also utilized resources provided by the CALERIE Research Network (R33AG070455) and the Dunedin Study (R01AG032282). Coauthors
received additional support from the American Brain Foundation, and NIH
grants P30AG028716, R01AG054840, R33AG070455, CIHR RN439810, R01 AG071717, R03AG071549 U01AG060906.
* RELATED_TOPICS
o Health_&_Medicine
# Healthy_Aging # Chronic_Illness # Menopause #
Epigenetics
o Plants_&_Animals
# Epigenetics_Research # Biochemistry_Research # Biology
# Biotechnology
* RELATED_TERMS
o Calorie_restricted_diet o Jogging o Ultraviolet o
Baldness_treatments o Insulin-like_growth_factor o UV_index
o Collagen o Plum
========================================================================== Story Source: Materials provided by Columbia_University's_Mailman_School_of_Public_Health.
Note: Content may be edited for style and length.
========================================================================== Journal Reference:
1. R Waziry, DL Corcoran, KM Huffman, MS Kobor, M Kothari, VB Kraus, WE
Kraus, DTS Lin, CF Pieper, ME Ramaker, M Bhapkar, SK Das, L
Ferrucci, WJ Hastings, M Kebbe, DC Parker, SB Racette, I Shalev,
B Schilling, DW Belsky. Effect of long-term caloric restriction
on DNA methylation measures of biological aging in healthy adults
from the CALERIE trial.
Nature Aging (in press), 2023 DOI: 10.1101/2021.09.21.21263912 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2023/02/230209114738.htm
--- up 49 weeks, 3 days, 10 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)