• Cities will need more resilient electric

    From ScienceDaily@1:317/3 to All on Tuesday, April 11, 2023 22:30:22
    Cities will need more resilient electricity networks to cope with
    extreme weather

    Date:
    April 11, 2023
    Source:
    Lund University
    Summary:
    Dense urban areas amplify the effects of higher temperatures, due
    to the phenomenon of heat islands in cities. This makes cities
    more vulnerable to extreme climate events. Large investments in
    the electricity network will be necessary to cool us down during
    heatwaves and keep us warm during cold snaps, according to a
    new study.


    Facebook Twitter Pinterest LinkedIN Email
    FULL STORY ========================================================================== Dense urban areas amplify the effects of higher temperatures, due to the phenomenon of heat islands in cities. This makes cities more vulnerable
    to extreme climate events. Large investments in the electricity network
    will be necessary to cool us down during heatwaves and keep us warm during
    cold snaps, according to a new study led by Lund University in Sweden.


    ========================================================================== "Unless we account for extreme climate events and continued urbanisation,
    the reliability of electricity supply will fall by up to 30%. An
    additional outlay of 20-60 per cent will be required during the energy transition in order to guarantee that cities can cope with different
    kinds of climate," says Vahid Nik, Professor of Building Physics at Lund University and one of the authors of the article in Nature Energy.

    The study presents a modelling platform that ties together climate,
    building and energy system models in order to facilitate simulation
    and evaluation of cities' energy transition. The aim is to secure the
    cities' resilience against future climate changes at the same time as densification of urban areas is taking place. In particular, researchers
    have looked closely at extreme weather events (e.g. heatwaves and cold
    snaps) by producing simulations of urban microclimates.

    "Our results show that high density areas give rise to a phenomenon called urban heat islands, which make cities more vulnerable to the effects of
    extreme climate events, particularly in southern Europe. For example,
    the outdoor temperature can rise by 17% while the wind speed falls by
    61%. Urban densification -- a recommended development strategy in order
    to reach the UN's energy and climate goals -- could make the electricity network more vulnerable.

    This must be taken into consideration when designing urban energy systems,
    says Kavan Javanroodi, Assistant Professor in Building and Urban Physics.

    "The framework we have developed connects future climate models to
    buildings and energy systems at city level, taking the urban microclimate
    into account.

    For the first time, we are getting to grips with several challenges around
    the issues of future climate uncertainty and extreme weather situations, focussing in particular on what are known as 'HILP' or High Impact Low Probability events," says Vahid Nik.

    There is still a large gap between future climate modelling and building
    and energy analyses and their links to one another. According to Vahid
    Nik, the model now being developed makes a great contribution to closing
    that gap.

    "Our results answer questions like 'how big an effect will extreme weather events have in the future, given the predicted pace of urbanisation and
    several different future climate scenarios?', 'how do we take them and
    the connections between them into account?' and 'how does the nature of
    urban development contribute to exacerbating or mitigating the effects
    of extreme events at regional and municipal level?' " The results
    show that the peaks in demand in the energy system increase more than previously thought when extreme microclimates are taken into account,
    for example with an increase in cooling demand for 68% in Stockholm and
    43% in Madrid on the hottest day of the year. Not considering this can
    lead to incorrect estimates of cities' energy requirements, which can
    turn into power shortage and even blackouts.

    "There is a marked deviation between the heat and cooling requirements
    shown in today's urban climate models, compared to the outcomes of our calculations when urban morphology, the physical design of the city,
    is more complex. For example, if we fail to take into account the urban
    climate in Madrid, we could underestimate the need for cooling by around
    28%," says Kavan Javanroodi.

    Vahid Nik explains that an increasing number of countries have become interested in extreme weather events, energy issues and the impact on
    public health. At the same time, there are no methods of quantifying the effects of climate change and planning for adapting to them, especially
    when it comes to extreme weather events and climate variations across
    space and time.

    "Our efforts can contribute to making societies more prepared for climate change. Future research should aim to examine the relationship between
    urban density and climate change in energy forecasts. Furthermore, we
    ought to develop more innovative methods of increasing energy flexibility
    and climate resilience in cities, which is a major focus of research
    for our team at the moment," says Vahid Nik.

    * RELATED_TOPICS
    o Matter_&_Energy
    # Energy_Technology # Physics # Thermodynamics
    o Earth_&_Climate
    # Weather # Global_Warming # Climate
    o Science_&_Society
    # Energy_Issues # Environmental_Policies #
    Resource_Shortage
    * RELATED_TERMS
    o Urban_planning o Electricity_generation o Urbanization o
    Smog o Hurricane o Winter_storm o Humidity o Climate

    ========================================================================== Story Source: Materials provided by Lund_University. Note: Content may
    be edited for style and length.


    ========================================================================== Journal Reference:
    1. A. T. D. Perera, Kavan Javanroodi, Dasaraden Mauree, Vahid M. Nik,
    Pietro
    Florio, Tianzhen Hong, Deliang Chen. Challenges resulting from urban
    density and climate change for the EU energy transition. Nature
    Energy, 2023; DOI: 10.1038/s41560-023-01232-9 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/04/230411105903.htm

    --- up 1 year, 6 weeks, 1 day, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)