Arctic ground squirrels changing hibernation patterns
Unique long-term study helps us understand biological responses to
climate shifts
Date:
May 25, 2023
Source:
Colorado State University
Summary:
New research analyzes more than 25 years of climate and biological
data.
The findings include shorter hibernation periods in arctic
ground squirrels, as well as differences between male and female
hibernation periods.
Facebook Twitter Pinterest LinkedIN Email
==========================================================================
FULL STORY ========================================================================== Arctic ground squirrels are unique among mammals. Their ability to
keep from freezing even when body temperatures dip below that mark on
the thermometer enables them to survive extreme winter climates. New
research published in Science analyzes more than 25 years of climate and biological data. The findings include shorter hibernation periods and differences between male and female hibernation periods. Spoiler alert
-- the girls "rise and shine" a little earlier in response to warming,
which could have both positive and negative ripple effects throughout
the food web in these ecosystems.
Senior author Cory Williams, assistant professor in the Department of
Biology at Colorado State University, began studying arctic ground
squirrels while at the University of Alaska Fairbanks more than 15
years ago. "I think the thing that makes our study unique is that we are looking at a long enough dataset to show the impacts of climate change
on a mammal in the Arctic," said Williams, who joined the CSU faculty in
2021. "We can show a direct link between changes in temperature and the physiology and ecology of these animals." Helen Chmura, lead author for
this latest research, started the analysis while a postdoctoral fellow
at the University of Alaska Fairbanks in 2018 and now works as a USDA
Forest Service researcher with the Rocky Mountain Research Station. "Our
data show that the active layer, the soil layer above the permafrost,
freezes later in the fall, doesn't get as cold in the middle of winter,
and thaws slightly earlier in the spring." She added, "These changes,
amounting to about a 10-day reduction of the time soil is frozen at a
meter deep, have occurred over just 25 years, which is fairly rapid."
Arctic ground squirrels survive harsh Alaska winters by hibernating
for over half the year, drastically slowing their lungs, heart, brain,
and body functions. They still must spend energy to generate enough
heat from stored fat to keep tissues from freezing. They resurface from
their burrows more than 3 feet below the ground each spring, famished
and eager to mate.
Chmura and Williams, along with co-authors, analyzed long-term air and
soil temperature data at two sites in Arctic Alaska in conjunction with
data collected using biologgers. They measured abdominal and/or skin temperature of 199 free-living individual ground squirrels over the
same 25-year period. They found that females are changing when they end hibernation, emerging earlier every year, but males are not. Changes in
females match earlier spring thaw.
The advantage of this phenomenon is that they do not need to use as much
stored fat during hibernation and can begin foraging for roots and shoots, berries and seeds sooner in the spring. Scientists think this could lead
to healthier litters and higher survival rates.
The downside is that if the males also do not shift hibernation patterns,
there eventually could be a mismatch in available "date nights" for
the males and females. Ground squirrels are also an important source of
food for many predators, such as foxes, wolves, and eagles. An indirect consequence of being active above ground longer is greater exposure and
risk of being eaten.
What will happen to the population is a big unknown - there are not
clear winners or losers. While hibernation requires less energy, which
could help overwinter survival, ground squirrel numbers also depend on
how predators respond to climate shifts. For now, Williams concludes,
"Our paper shows the importance of long-term datasets in understanding
how ecosystems are responding to climate change." Chmura agreed, adding,
"It takes a great team to continue a dataset like this for 25 years,
especially in the Arctic." Other contributing authors include Brian
Barnes, University of Alaska Fairbanks, and Loren Buck from Northern
Arizona University, who both began this study in the 1990s to learn how
Arctic ground squirrels survive such long, cold, dark, winters and just
how cold their hibernation spots were. These questions prompted them to
install the first soil temperature monitors, and as technology improved,
they were able to measure those temperatures all winter long. Cassandra
Duncan and Grace Burrell assisted with the research while students at
the University of Alaska Fairbanks.
* RELATED_TOPICS
o Plants_&_Animals
# Soil_Types # Biology # Nature # Organic
o Earth_&_Climate
# Global_Warming # Climate # Tundra # Weather
* RELATED_TERMS
o Mesozoic o Weather o Mule o Arctic_fox o
Ice_age o Endospore o Organic_farming_methods o
Temperature_record_of_the_past_1000_years
========================================================================== Story Source: Materials provided by Colorado_State_University. Note:
Content may be edited for style and length.
========================================================================== Journal Reference:
1. Helen E. Chmura, Cassandra Duncan, Grace Burrell, Brian M. Barnes,
C.
Loren Buck, Cory T. Williams. Climate change is altering the
physiology and phenology of an arctic hibernator. Science, 2023;
380 (6647): 846 DOI: 10.1126/science.adf5341 ==========================================================================
Link to news story:
https://www.sciencedaily.com/releases/2023/05/230525141359.htm
--- up 1 year, 12 weeks, 3 days, 10 hours, 50 minutes
* Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)